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Nuclear Tetrahedral Symmetry: Possibly Present throughout the Periodic Table
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More than half a century after the fundamental, spherical shell structure in nucle1 had been established,
theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical
shapes may exist. Group-theoretical analysis suppurted by realistic mean-field calculations indicate that
the corresponding nuclei are characterized by the T2 (“double-tetrahedral”) symmetry group. Strong
shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of
TP it can be seen as a geometrical effect that does not depend on a particular realization of the mean
field. Possibilities of discovering the 77 symmetry in experiment are discussed.
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A possibility that atomic nuclei exhibit tetrahedral
symmetry —in quantum physics, it is discussed mainly as
a property of certain molecules, metal clusters, or fuller-
ines —has a definite interest for all the related domains of
physics. While in the above-mentioned objects the under-
lying interactions are electromagnetic, the nuclear tetrahe-
dra (pyramidlike nuclei with “rounded edges and corners™)
are expected to be stabilized primarily by the strong in-
teractions. Within the nuclear mean-field theories, a
convenient framework for discussing this phenomenon 1s
provided by the spontaneous symmetry breaking mecha-
nism. It is analogous to the one associated with the
existence in nature of numerous deformed nuclei, e.g., el-
lipsoidal ones. According to such a mechanism, all nuclei
are governed by rotationally invariant elementary nucleon-
nucleon interactions, vet, for some specific low energy
configurations their total energy becomes lower when
the corresponding mean fields take nonspherical shapes.
The mathematically different but physically analogous
mechanism of spontaneous symmetry breaking is related
to a discrete symmetry: the inversion. The underlying
elementary interactions, although inversion invariant, do
not guarantee that all the resulting low energy nuclear
configurations lead to stable inversion-invariant shapes,
and there is growing experimental evidence of the ex-
istence in nature of the octupole deformations, usually
pear-shape type, cf., e.g., Ref. [1]. It turns out that
the tetrahedral nuclei do break spontaneously both the
spherical symmetry and the symmetry by inversion (see
below).

In the past, there have been a number of studies
published that address the question of the nonaxially
symmetric octupole deformations. Using the Strutin-
sky method and considering a space composed of
2 (quadrupole) + 4 (octupole) + 5 (hexadehapole) +
6 (multipolarity 5) = 17 deformations, the authors of
Ref. [2] have suggested that an ensemble of isomeric states
of tetrahedral symmetry may exist in the region of light
radium nuclei pointing to the importance of the thus far ne-
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glected a3, deformation. Using the Hartree-Fock approach
in their symmetry-unconstrained variant, Takami et al.,
Ref. [3], obtain in some light Z = N nuclei an a3
instability. In Ref. [4] this and other exotic octupole
deformations were studied in the *2S nucleus while, in
[5], a similar hypothesis has been advanced theoretically
for a group of nuclei around A ~ 70.

The experimental verification of the discussed phenome-
non does not exist thus far. We believe that the mechanism
related to a3, deformations is just a “visible part of an
iceberg”: a phenomenon whose physical consequences are
much richer than what has been discussed thus far. First
of all, the corresponding T7 symmatry is nearly unique:
Only 7Y and the octahedral oy point-group symmetries
produce in deformed nuclei the nucleonic level degen-
eracies higher that 2. More precisely, some states must
carry twofold and some fourfold degeneracies. The corre-
sponding nuclear Hamiltonians are invariant with respect
to the very large number c}f 48 different symmetry ele-
ments (in the case of the Oh . this number would be 96).
The depth of the nuclear mean-field potential and the num-
ber of its bound states depend only very weakly on defor-
mation: The fourfold degeneracy mechanism at nonzero
a3p implies larger interspacing and helps in producing very
large shell gaps that are comparable to or larger than at
least some of the gaps at spherical shapes. Moreover,
since the argument is geometrical in nature, the predicted
strong shell gaps propagate all over the periodic table in
a repetitive fashion independently of a particular realiza-
tion of the mean-field approach. This mechanism is far
from being an exoticity of a few nuclei here and there. Its
presence is predicted in dozens if not hundreds of nuclei.
Among unique quantum features, the prediction should be
noted that some nucleonic orbitals should have the ex-
pectation value of parity close to zero—nearly complete
disappearance of the quantum characteristic that is other-
wise dominating in the microworld of nuclear interactions.
Another unique element foreseen concerns the collective
(especially low spin) rotation of the quantum tetrahedra:
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The corresponding predicted structures of rotational bands
will be very different for even (74 group) and odd (T
group) nuclei since both the number of the irreducible rep-
resentations (irreps) associated with these groups and the
dimensions of the corresponding irreps are very different
as well (see e.g., Refs. [6,7]).

The mathematical background of our considerations
is well known and can be summarized in a few lines.
Consider a nuclear deformed mean-field Hamiltonian
H = H(r,p,s;&), where & represents the ensemble
of all the deformations {a, ,} and a group of symmetry

G with the symmetry operators {@[,@g,...,@f} & G,

so that [H,@k] =, for k = 1,2,...,f. Suppose that
the group in question has irreducible representations
{R|,R,,...,R,} with the following dimensions, re-
spectively: {d,d,...,d,}. Then the eigenvalues &, of

the problem H ¥, = &, ¥,, Vv, appear in multiplets:
d,-fold degenerate, d,-fold degenerate, ... d,-fold degen-
erate. Since the nuclear mean-field Hamiltonians do not
depend explicitly on time, it follows that each eigenenergy
must be at least twice degenerate (Kramers theorem). In
terms of irreducible representations of G, this property
manifests itself for the deformed nuclei through the
presence of two-dimensional irreducible representations
or pairs of conjugated one-dimensional ones [7].

The point-group symmetries of the nuclear mean-field
Hamiltonian can be very often directly connected to the
corresponding deformation parameters: If R(d, @) de-
notes the nuclear surface, expanding it into a series of
spherical harmonics Y, (%, ¢) with the numerical coef-
ficients a,, (deformation parameters) provides a natural
classification scheme. Indeed, setting all a,, to zero,
one obtains a sphere; posing a =2 u=+20 ¥ 0 gives the
most important example of the “ellipsoidal” D3), symme-
try, by setting @)—23,-0 ¥ 0 we obtain an example of the
octupole-axial (C2) symmetry; many other combinations
of the nonzero deformation parameters may lead to more
“realistic” realizations of the symmetry groups in nuclei.
It can be shown using elementary properties of the spheri-
cal harmonics that in the case of the pure octupole defor-
mations the following relations between the nuclear shape
and the double point-group symmetries of the fermion
Hamiltonians hold: (i) Deformation a3y implies the CZ2-
symmetry group with infinitely many one-dimensional ir-
reps, characterized by the so-called K-quantum numbers;
(ii) deformation a3; implies the Cﬂ, symmetry that gen-
erates only one two-dimensional irrep; (iii) deformation
a3, implies the Tf symmetry of two two-dimensional and
one four-dimensional irreps; (iv) deformation a3z implies
the Df;, symmetry, and generates three two-dimensional
Irreps.
 However, the link between the above scheme and the re-
alistic calculations is not always direct—especially when
the point groups rich in structure are concerned. Any iso-
meric minimum is, within the mean-field theory, associ-
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ated with the presence of energy gaps in the correspond-
ing single particle spectra— usually the larger the gap, the
more stable the implied equilibrium deformation.

Within a given symmetry (given irrep) the noncrossing
rule implies that the single-particle energies tend towards
an equidistant distribution when deformation increases. If
a given group admits only one irreducible representation,
each level can carry at most two nucleons. When the cor-
responding irreducible representations have higher dimen-
sionality, e.g., four (the corresponding curves are marked
with the double Nilsson labels [Nn, A]() in Fig. 1), more
particles may reside on one single energy level, leading,
in some other place of the energy scale, to effectively di-
minishing the number of levels and possibly increasing the
shell gaps. The features discussed above are followed very
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FIG. 1. Results of the realistic calculation of the proton single-

particle energies in function of the a3, deformation corre-
sponding to the T7 symmetry (top) compared to the analogous
dependence in function of aj (bottom, C;ﬂ, group). The
numbers in front of the Nilsson labels give the expectation
values of parity at the extremes of the deformation axes. None
of the Nilsson quantum numbers is a good quantum number
at tetrahedral deformations: Each label gives the full set of
quantum numbers of the strongest basis state. (Results were
obtained using a standard deformed Woods-Saxon potential.)
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closely by the realistic calculation results of Fig. 1 where,
in addition, the extremes on the horizontal axes have been
chosen in such a way that, by comparing the labels on the
left- and on the right-hand side of the figure, one can read
how quickly the parity mixing sets in when the deforma-
tion increases (the curves are symmetric with respect to
0). The parity mixing at |a3;| ~ 0.15 is so strong that the
typical calculated parity expectation values are (~=0.5).

Several observations deserve emphasizing. First of all,
there is a qualitative difference in the deformation depen-
dence in the two studied cases as predicted by the consid-
erations based on the point-group symmetries presented
above: At |as;| > 0.15 the level distribution can al-
ready be considered “nearly uniform” except for a rela-
tively small gap at Z = 56 that decreases slowly with
increasing deformation. In contrast, the spectrum in func-
tion of as, reveals strongly increasing gaps at Z = 32,
AE > 2 MeV, at Z = 40 with AE ~ 3 MeV, and a huge
cap at Z — 56,58; the latter can be seen as a ~4 MeV
separation in the spectrum “cut across” by a single, usual
(i.e., twice degenerate) orbital. These deformed gap sizes
are comparable to, or larger than, the strongest spherical
oaps at Z = 20, 28, 40, or even 50, which are known 1n
the medium heavy nuclei; neutron results are similar.

Not all the gaps have an equal impact on the existence
(or not) of the well-defined minima on the total energy
surfaces. More extended calculations whose results will
not be presented here in detail can be summarized as fol-
lows: The strongest tetrahedral-symmetry effects appear
at proton numbers Z, = 16, 20, 32, 40, 56-58%, 70*, and
90—-94*, where the asterisks denote the gaps that are par-
ticularly strong (up to ~3 MeV or so). A clear proton-
neutron symmetry exists in the calculations leading to the
related tetrahedral neutron gaps at N, = 16, 20, 32, 40,
56-58%*, 70%, 90-94%, 112, and 136/142.

Typically. tetrahedral minima on the total energy sur-
faces are accompanied by an oblate- and/or a prolate-
symmetry minima. The energy cuts corresponding to the
paths from the tetrahedral minima down to the ground state
(g.s.) have been calculated in function of increasing 5, by
performing a minimization with respect to the y deforma-
tion as well as, simultaneously, {a3,; 1 = 0.1,2,3} and
{ag,; p = 0,1,2,3,4}, ten-dimensional minimization, us-

ing the standard Strutinsky method. These results are pre-

—— ‘ 108 160 242
sented in Fig. 2 for ingqg, 40 ZTes. 70 Y bgg, and TppFmis

nuclei. whose tetrahedral equilibrium deformations are cal-
culated at a3» =0.13, 0.13, 0.15, and 0.11, respectively.
The right-hand side minima (Fig. 2) for ¥Zr and '*°Yb
nuclei are at oblate deformations; the corresponding en-
ergies visible in the figure are, respectively, at 1.4 MeV
and ~0.1 MeV above the prolate g.s. minima, the latter
not shown in order not to perturb the legibility of the fig-
ure. For the other two nuclei, the right-hand side min-
ima correspond directly to the prolate ground states; in
the 2%2Fm case the tetrahedral minimum lies particularly
high (7.1 MeV above the g.s.). One can see from the fig-
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FIG. 2. Results of the multidimensional minimization of the
total nuclear energies projected on the quadrupole deformation
axis. The gamma deformation as well as all other deformations
vary along the B3, axis following the minimization, for each
curve separately. The left-hand side inset shows an exaggerated
(for better visibility) view of the tetrahedral shape at a3 = 0.3,
roughly twice the calculated equilibrium deformation. The right-
hand side inset shows for comparison an oblate shape surface at
B, = 0.20,y = 60°, i.e., roughly at the calculated equilibria.

ure that the calculated barriers are of the order of 1 MeV,
similarly to those encountered in the case of the experi-
mentally known prolate/oblate shape coexistence. Unfor-
tunately, lack of information about the collective inertia
parameters makes it impossible to speculate about the 1s0-
meric half-lives at present.

An experimental identification of proposed T;'f symme-
try may rely on one or a combination of several criteria.

First of all, within the class of the single-particle excita-
tions, the presence of the fourfold degeneracies will mani-
fest itself by the presence of a multitude of particle-hole
transitions of close-lying energies. For instance, if both
the particle and the hole states are associated to the
exact-symmetry fourfold degenerate levels, one should
expect a I6-fold exactly degenerate multiplet of transi-
tions. (In realistic situations, the nuclear polarization
effects are expected to be, in general, different for various
1 p-1h excitations and the predicted 16-fold degeneracy
in the associated decay lines will be only approximate)
If the reference configuration was the tetrahedral 07
state, the corresponding 16 particle-hole excitations will
decay to it. If as a reference configuration an arbitrary
particle-hole excited state built on the tetrahedral mini-
mum was taken, for example, of a given spin-parity
1™, a family of 2p-2h states can be constructed using
similar considerations with the resulting 16 close-energy
transitions feeding this /™ state. It thus becomes clear
that the noncollective decay spectra associated with
the tetrahedral minima might contain abundantly the
approximate 16-plets of transitions. Although populating
and observing such multiplets experimentally is by far
a nontrivial task, the good news is that the discussed
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FIG. 3. Qualitative comparison of the electromagnetic transi-
tions in a “pear-shape” nucleus, left, and a tetrahedral nucleus,
right. In the former case, the static dipole moments are often
strong, thus implying a presence of the collective interband E 1
transitions in addition to the E2 ones. Tetrahedral nuclei gener-
ate no static dipole moments and, thus the E'1 transitions should

be absent in this case.

criterion 1s a “yes/no” condition—a well-defined effect
to seek.

Within the class of the low-lying collective rotational
excitations, not much is known at present as far as nuclear
tetrahedral quantum rotor behavior is concerned. In a for-
mal treatment of the rotational spectra of the tetrahedral
symmetry molecules [8], the corresponding rotor Hamil-
tonians are expanded in terms of tensor operators that are
constructed out of {I,, I, 1.} angular momentum operators.
The nuclear rotor Hamiltonians can be constructed analo-
gously: We have performed the corresponding calcula-
tions, and the preliminary results indicate characteristic
degeneracies of the rotor levels clearly different than those
of the “traditional” ellipsoidal rotors.

Fortunately, qualitative criteria of the yes/no type can
be formulated that are related to the rotational decay of the
tetrahedral nuclei, and this in a nearly model-independent
way. The starting point in the considerations is the
so-called simplex invariance, i.e., the invariance of the
Hamiltonian with respect to the product of parity, 7 and
Ry, a 180° rotation about, for example, the O, axis:

e

S =4 iﬁ’.},. This invariance implies, as discussed in
more detail in Ref. [9], that the rotational energies form
two parity-doublet sequences (four parity-doublet E2
bands) as illustrated schematically in Fig. 3. Both the
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“usual” axial-octupole shape nuclei and the tetrahedral
nuclei obey the simplex symmetry and thus must produce
the parity-doublet bands. However, the tetrahedral nuclei,
in contrast to the usual octupole-type ones, are not
expected to produce the E1 interband transitions since the
nuclear pyramids, due to their high symmetry, will not
have any significant dipole moments.

A particularly appealing, “academic case” possibility
corresponds to a pure tetrahedral symmetry with no other
multipole deformations present. In such an ideal case, the
dipole and quadrupole moments are expected to be zero
and the first nonvanishing moments will have A = 3. In
such a case, the parity-doublet energies at the right-hand
side of Fig. 3 would be connected by pure E3 transitions
rather than E2 transitions.

In summary, we suggest that the tetrahedral symme-
try in nuclei should be present among many isomeric
states throughout the periodic table. We predict the pro-
ton and neutron numbers for which this effect should be
the strongest. The fourfold 7; degeneracy of related de-
formed nucleonic orbitals is a unique feature—only the

inversion-conserving octahedral 07 symmetry may pro-
vide in deformed nuclei the degeneracies higher than two
(more precisely, fourfold).
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