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Radial velocity and intensity of light, by W. de Sitter. 

In Zeitsc/zrz'jt fur Plzyst'k, XXI, 6, p. 333 (I924) 
Prof. M. LA ROSA has pointed out a remarkable 
consequence of the theory of RITZ regarding the 
propagation of light, which seems not to have been 
noticed before. If this theory, according to which 
the velocity of the source is added to the velocity 
of light, is true, then the light emitted by a star, 
whose motion relatively to the observer is perodic, 
during equal intervals of time, will reach the obser
ver during unequal intervals, the inequality increasing 
with the distance of the star. Consequently the star 
will appear to the observer to be variable, even if 
its emitted light has a constant intensity. This, of 
course, is entirely correct, but, contrary to the opinion 
of Mr. LA ROSA, it does not afford an argument in 
favour of Rrrz's theory, but rather against it. 

If the waves emitted by the source during the 
interval of time dt reach the observer during the 
interval dt' = dt (I + q), then the observer will, on 
the one hand, ascribe to the star an intensity 
i = t"o/(I + q), if the true intensity be i0 , and on the 
other hand he will, according to Doppler's principle, 
ascribe to it a radial velocity v = cq *) (positive for 
recession), if c be the velocity of light from a source 
without relative radial motion relatively to the ob
server. Both effects depend on the same factor q. 
Consequently we have, neglecting the square of q: 

!:J.i V ---;- = q= -, 
Z0 C 

or, since one magnitude corresponds to 0.4 in the 
logarithm of the intensity, for small values of q: 

and consequently 

(l) 

I:J. m= r-o86 q, 

v = 277000 ll m, 

if the velocity 'l' is expressed in kilometers per 
second. Thus, if the variability of the star were due 
to its motion, then to a variation of a few tenths 
of a magnitude would correspond by (I) a change 
of apparent wavelength which would by Doppler's 
principle be interpreted as a velocity of the same 
order as the velocity of light. 

For large values of q the above formulas are no 
longer correct, but we have 

ll m= 2·5 log (1 + q), 

") This is the formula according to the classical theory for 

and we find the following corresponding values of 
A m and v: 

V 'V 

Am classical theory relativity 
approximate 

~Tit+ I ~m- theory formula (1) 

Ill 

± O.l + 29000 - 26000 ± 28 000 ± 28000 

± 0.2 + 61000 - soooo ± 55 oco ± 55000 
± 0.5 + 176000 - 114000 ± 129 000 ± 139 000 

± 1.0 + 434000 - 181000 ± "218"000 ± 277000 

The velocities are thus of the same order as by 
the approximate formula (I), though those found 
according to the theory of relativity can, of course, 
never exceed the velocity of light. 

On the other hand the variations of magnitude, 
which undoubtedly accompany any real radial velo
city according to th~ principle pointed out by LA 
RosA, are so small that they are entirely unobser
vable. To a velocity of 300 km. sec-x, which is 
about the largest occurring amongst double stars, 
would correspond a change of brightness of about 
o·ooi magnitude. 

Take as an example a star moving with uniform 
angular velocity 1t in a circle with radius a in a plane 
passing through the observer. The star's distance from 
the observer then is 

A'= A- a sin 1rt, 

and the radial component of its velocity is 

v = a1z cos 1et. 

Now let the velocity of the light emitted by the 
star towards the observer be 

c'=c+x'l', 

where x =I in RITZ's theory and x =- o in the usual 
theory. Then the light which leaves the star at the 
time t reaches the observer at the time t' = t +a' fc' or 

I . cm 
f=t+-(I:J.-asm1ll) {I +x-cos1zt)-x. 

c c 

The second factor can be developed, and we can 
neglect the square of attfc. Then differentiating we find 

(2) 
dt' a?t an2 a . 
-=I-- cos nt+ x ---- sm 11t. 
dt c c2 

Consequently in the formula dt' = dt (I + q) we have 

an 1eA . 
a moving source, the observer being at rest. The theory of 
relativity of course gives V (c + v)f(c- v) = I + fJ, v being (3) 
the relative velocity. 

q =--[cos nt-x- sm 1zt] 
c c 
=- K cos (1lt + e), 
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where ?Z t:. 
tane=x-, c . 

an 
K=-sece. 

c 

The second term in (2) and (3) containing t:. may 
become very large for distant stars, unless x is very 
small. Prof. L!\ RosA neglects the first term, which, 
of course, for large values of t:. is much smaller than 
the second one if x = I. But, if the second term is 
preponderating in the effect on the magnitude, it is 
also preponderating for the Doppler effect, and will 
give rise to enormous radial velocities. Since these 
are not observed, the magnitude effect can only be 
very small, and we must conclude that the second 
term does not preponderate. 

ZURHELLEN has pointed out in 1914 (A. N. 198, 
4927, p. I) that the angle e, which occurs in (3), 
can be actually determined in the case of edipsing 
variables with known spectroscopic orbits, since it 

represents the difference of the phase as determined 
from the radial-velocity curve and from the light
curve of the eclipse. He discusses 7 stars, for all of 
which the upper limit of a possible difference of phase 
is found to be smaller than about half an hour. Then from 
two stars with known parallaxes (Algol and~ Aurigae) 
he concludes that x cannot exceed one millionth. 
ZURHELLEN of course does not mention the effect on 
the magnitude and as a matter of fact for ordinary 
velocities, such as he was dealing with, it is entirely 
negligible, as has already been mentioned above. 

I may mention in this connection, though it does 
not affect our present argument, that LA RosA's 
opinion, that the only stars for which Kepler's laws 
have been actually verified are the visual binaries 
with known orbits, appears to me to be incorrect. 
In fact, the same laws are involved in the deter
mination of spectroscopic orbits, and are consequently, 
if the observed velocities are well represented by the 
computed orbit, confirmed by these observations. 


