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THE BARR EFFECT:
A STATISTICAL STUDY

By Ian D. Howarth
University College London

The reality of the ‘Barr effect’ is established by using nonpara-
metric statistical tests on the DAO Eighth Catalogue sample. For
orbits of reasonable quality, it is present only for orbital periods
< 3 days, with a preferred direction for longitudes of periastron of
® ~ 100°. These characteristics are qualitatively consistent with
measured radial velocities being biassed by gas streams. The Barr
effect is not detectable in Griffin’s ‘Spectroscopic Binary Orbits’
series.

Samples of eccentric, short-period spectroscopic-binary orbits tend to show a
nonuniform distribution of longitudes of periastron, . This ‘Barr effect’ was
first demonstrated by the eponymous J. Miller Barr!, a Canadian amateur
astronomer. His initial report was not warmly received by contemporary
professionals23, in hindsight with some justification, not least because several of
his ‘orbits’ were parameterizations of radial-velocity variations actually asso-
ciated with pulsations. Nonetheless, by the time of Struve’s review* the Barr
effect was widely accepted as being genuine, and it was (and is) attributed to the
distortion of radial-velocity curves by gas streams.

Recent discussions have illustrated the Barr effect by means of a ‘Barr chart’;
that is, by plotting a probability distribution function (PDF) in polar coérdi-
nates (e.g., refs. 5, 6). From a qualitative point of view this is an effective way of
presenting the data (although, as Griffin® remarks, it can be misleading because
of the subjective tendency to interpret such a diagram as weighted by area,
rather than by radius). However, for quantitative purposes a ‘Barr chart’ is less
satisfactory, because arbitrary choices have to be made concerning bin boundar-
ies. This renders statistical studies difficult; indeed, there appears to be no
formal demonstration of the statistical significance of the Barr effect in the
literature. The principal purpose of the present note is to consider the statistics
of the Barr effect.

As with all finite samples drawn from continuous distributions, the distribu-
tion of longitudes of periastron is more objectively presented in the form of a
cumulative distribution function (CDF) than as a PDF. Figure 1 shows the
CDFs for 920 binaries having eccentric orbits listed in the Eighth Catalogue’, for
two subsets of those data, and for 84 binaries from Griffin’s seriess.

It is relatively straightforward to investigate the CDF with rigorous, nonpara-
metric statistical tests. In the present case, we wish to test the null hypothesis
that the distribution of longitudes of periastron in the parent population is
uniform. At first sight, the Kolmogorov-Smirnov (K-S) test is the obvious one
to apply (e.g., ref. 8); here the test statistic is D,g, the maximum difference
between the hypothesized and observed cumulative distributions. However, in
the context of the Barr effect, this test statistic, and the associated probability
level P, , have the undesirable property of not being invariant with choice of
origin. For example, taking all a-, b-, and c-quality orbits for systems with
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Cumulative distribution functions for longitudes of periastron. The samples are, from
top to bottom, (i) the 920 orbits from the Catalogue’; (ii) the 80 class a— Catalogue orbits
with P, < 3 days; (iii) the 83 class a—c orbits with P_, > 1000 days; and (iv) the 84
eccentric-orbit systems reviewed by Griffin®. The diagonal lines show, for each sample, the
CDF for parent populations uniformly distributed in ©.

orbital periods P_, < 3 days listed in the Catalogue’ gives D,y = 026, P, =
00%:; adding 90o° to all values of ® (and taking modulo 360°) changes these
figures to 014, 9:'5%,. In the former case we would conclude that there is strong
evidence for a non-uniform distribution of longitudes of periastron, while in the
latter we would conclude that the data were consistent with the null hypothesis
of a uniform distribution — and yet the data are the same in both cases!

This dependence on choice of origin is implicit in this application of the K-S
test, which is more appropriately used when the parent PDF is centrally peaked.
The dependence is removed if we choose as a reference not the model CDF, but
a line which has the same slope and which gives a mean (O—C) of zero. A
suitable test statistic may then be defined — for example, the normalized r.m.s.
dispersion about the offset line, o, or (by analogy with the K-S statistic) the
maximum deviation of observed points from that line, D’. The probability
distribution of the test statistic may be estimated nonparametrically from
Monte-Carlo simulations.

Table I summarizes calculations made in this way for various subsets of the
Catalogue sample. As a test statistic, o, is listed; experiments showed D’ to be
rather inefficient (i.e., to be relatively insensitive to non-uniform distributions).
The corresponding probability levels were estimated by comparison with 1000
artificial datasets, each having the same number of points, N, as the observed
samples; those points were drawn at random from a uniform distribution in ®.
For orbits of quality a—c (‘“‘reliable’’ or better, in the judgement of the compilers
of the Catalogue), the distribution in o is significantly non-uniform only for P

A . . e . .~ orb
<3 days. For lower-quality orbits (quality indicators d—i; ‘‘poor”’ solutions or
y q y q p
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TABLE 1
Analysis of the Catalogue Sample

Sample o P(%) R Py (%) &R

Por, (d) q N
0—-00 abcdet 920 0017 1-8 0071 14 41
000 abc 598 0013 284 0049 224 74
0-00 dei 322 0033 04 0135 o5 18
o-3 abcdei 129 0059 <OI 0252 <01 76
o3 abc 80 0079 <01 0341 <01 98
o3 det 49 0062 46 0246 4'5 22
3-1I0 abcdei 208 0031 39 0’129 31 31
3-10 abc 133 0023 500 0082 404 20
3-10 det 75 0051 33 0218 2'1 39
10-30 abcder 148 0020 630 0'064 562 94
10-30 abc 107 0'026 493 0096 366 97
10-30 det 41 0042 473 0025 97'1 304
30—-100 abcdet 92 0'050 23 0210 I'§ 32§
30-100 abc 63 0036 384 0129 370 321
30-100 - det 29 0092 o7 0393 o3 328
100-300 abcdet 87 0021 843 0061 716 334
100-300 abc 61 0028 731 0071 728 248
100—-300 det 26 0063 21°§ 0256 161 15
300—1000 abcdel 104 001§ 977 0031 904 65
300-1000 abc 71 0019 946 0054 808 304
300-1000 det 33 0048 402 0188 306 97
1000—00 abcdei 152 o018 69-0 0023 925 218
1000—00 abc 83 0026 671 0051 822 183
1000—00 det 69 0028 665 0035 927 309

Notes: ¢ is the quality of the orbital solution given in the Eighth Catalogue’; o, and R are the test
statistics, and P_, P, the corresponding probabilities that the null hypothesis of a uniform distribution
in ® is not violated. The preferred direction of o is quantified by 6 (R).

worse) the behaviour is, not surprisingly, less systematic, although there is a
suggestion of a significant Barr effect extending to P, <10 days. Figure 1
illustrates the difference between short- and long-period systems by displaying
CDFs for class a—c orbits having P, > 1000 days, for which the sample sizes
are nearly identical.

The preferred direction for o is not straightforward to define on the basis of
the CDF, in part because ‘clumping’ does not occur on a single, unique scale.
The largest positive slopes in the CDF do indicate favoured regions, and
correspond to the greatest radial offsets in a ‘Barr chart’; but although this
criterion again does not suffer from the need for arbitrary choices of bin
boundaries, nor from the weighting problem noted by Griffins, it is nonetheless
uncomfortably subjective. A more objective approach is provided by taking the
mean normalized rectangular coérdinates of the sample of observed longitudes
of periastron (i.e., £ = N' X, (sin ®), y = N! X, (cos ®)). This not only
defines a single preferred direction for ®, but also provides the basis for a second
statistical test: the Rayleigh test. The test statistic here is R = +/(&2 + 372);
confidence levels for non-zero R (i.e., for significant clumping) can again be
estimated nonparametrically by Monte-Carlo simulations. Results are included
in Table 1. The Rayleigh test confirms the results of the o statistic, and is
essentially equally efficient.
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The fact that the Barr effect is present at a statistically significant level only in
short-period systems provides strong circumstantial evidence for an origin in gas
streaming, which in general is most likely to occur in close systems. For the full
sample of Catalogue orbits, the distribution is, by the Rayleigh criterion, peaked
towards @ =~ 40°, in agreement with the result found’ for the sample from the
Sixth Catalogue’. However, the sample of well-determined, short-period orbits
peaks at ® ~ 100° considerably further round the orbit. Compared to a
sinusoidal radial-velocity curve, ® ~ 100° corresponds to a shallower, longer
‘rising’ branch, and a steeper, shorter ‘falling’ branch.

If we suppose that the centre-of-mass motion of a given star is actually a
circular orbit, then an observed radial-velocity curve with ® ~ 100° is consis-
tent, in a schematic way, with the effects of gas streaming either onto or (more
probably) from that star. A gas stream from the star will be seen in projection
against it from somewhat before superior conjunction until about a quarter of an
orbit later. The gas stream will have a line-of-sight velocity of approach which is
greater than that of the star, and if it produces absorption lines then those lines
may ‘pull’ the measured stellar velocities to greater negative values (with respect
to the y-velocity), producing an apparently steep ‘falling’ branch. A gas stream
from the second (presumed fainter) star would be seen projected against its
companion in, roughly, the quarter-orbit before superior conjunction of that
companion, and would ‘pull’ the stellar velocities to greater positive velocities —
again producing an apparently steep ‘falling’ branch.

Finally, the series of ‘Spectroscopic Binary Orbits’ published in this Magazine
by Griffin represents a unique sample of long-period orbits established with
high-quality data. We should not expect the Barr effect to be evident in that
sample if it is a result of gas streams. In reviewing the first 100 papers in the
series, Griffiné noted a “‘tantalizing’’ suggestion of a slight excess of orbits with ®
in the second octant, but he concluded (though without an explicit statistical
test) that the Barr effect is absent in his sample. Monte-Carlo calculations
provide a quantitative confirmation of that conclusion; the first 100 ‘Orbits’
include 84 having significant eccentricity, and they yield o, = o019, P, =
92:3%,, and R = 0041, P, = 8669%,.

In summary, there is strong statistical evidence for a non-uniform distribution
of observed longitudes of periastron in short-period spectroscopic binaries,
which is plausibly interpreted in terms of gas-streaming effects. More-detailed
consideration of the makeup of the Caralogue sample, together with gas-dynamic
calculations, would be necessary to confirm this interpretation quantitatively.

I am grateful to J. M. Fletcher for providing a machine-readable version of the
Catalogue, and to Roger Griffin and Charles Jenkins for comments on an early
version of this note.
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