[вернуться к содержанию сайта]

Барашенков В.С.
"ВСЕЛЕННАЯ В ЭЛЕКТРОНЕ"
(М.: Дет. лит., 1988 – фрагменты из книги)

ВВЕДЕНИЕ

    Мальчишкой я мечтал стать авиаконструктором. Это были первые послевоенные годы, и моё воображение, ещё не остывшее от военных сводок информбюро, было захвачено проектами летающих танков-амфибий, сверхдальних бомбардировщиков, истребителей "без мотора" – на реактивной тяге. О физике я не думал, она казалась мне страшно скучной: динамометры, блоки, расчёты линз, нудные задачки на теплоёмкость. Но однажды мне в руки попала небольшая книжечка с интригующим названием: "Лучи из мировых глубин". Откуда приходят к нам эти лучи, что их порождает и разгоняет в пустом пространстве космоса до сверхвысоких энергий – всё было загадкой. Чтобы разгадать её, учёные создавали сложные приборы, опускали их в глубины океана, оставляли в недрах тёмных пещер, поднимали на стратостатах в бескрайнюю голубизну неба. Опыты приносили новые загадки ...

    Оказалось, что физика – удивительно увлекательная и интересная наука! С одной стороны — море фантазии: взрывающиеся частицы, бездны атомов, миры и антимиры, а с другой — строгие доказательства, вязь математических формул, понятных лишь посвящённым. И я пошёл учиться на физический факультет университета.

    С тех нор прошло сорок лет, и мне не наскучило заниматься физикой.

    Сегодня физическая наука совсем не та, что была полвека назад. Современные институты похожи на крупные заводы с сотнями научных сотрудников, тысячами инженеров и рабочих. Залы, в которых размещаются физические установки, сравнимы с крупными стадионами. И всё это начинено сложнейшей электроникой и автоматикой. Холод, при котором воздух становится жидким и течёт как вода, соседствует с температурами в десятки миллионов градусов, когда любое вещество взрывается, как капля масла на раскалённой сковородке, мгновенно превращаясь в плазменный газ. Давление в тысячи атмосфер и глубокий вакуум, в котором редкие атомы удалены друг от друга, как звёзды в космосе. Батискафы помогают физикам устанавливать приборы на дне глубочайших океанских впадин, а ракеты выносят их за пределы Солнечной системы.

    Но, пожалуй, самое удивительное в современной физике — это неожиданно тесная связь Вселенной, как целого, со свойствами элементарных частиц — простейших, невидимых даже под микроскопом “кирпичиков”, из которых “склеено” всё окружающее нас вещество. Казалось бы, совсем различные и несоизмеримые объекты, но вот получается, что при определённых условиях Вселенная может обладать свойствами микрочастицы, а некоторые микрообъекты, возможно, содержат внутри себя целые космические миры. Во всяком случае, так говорит теория. Большое и малое, сложное и простое — здесь все перепуталось.

    Хитро устроена природа! Как говорится, поди разберись, где тут начало того конца, которым кончается это начало!

    Космология — наука, изучающая свойства и развитие Вселенной в целом. Она пытается ответить на самые сокровенные вопросы мироздания: откуда произошёл наш мир, был он всегда или же “родился” из какой-то иной формы материи, чем закончится его “жизнь” и закончится ли вообще? И самый главный вопрос: почему наш мир таков, каков он есть? Разве не может быть Вселенной, где, например, размеры всех атомов в десять раз больше, свет распространяется в несколько раз быстрее, и кроме длины, ширины и высоты, есть ещё четвёртое, а может быть, даже пятое и шестое измерения? Возможно, такие миры где-то существуют? А если нет, то почему?

    Если космология интересуется бескрайними далями, то физика элементарных частиц, наоборот, устремлена в глубинные недра материи. Её предмет — микромир. Основной вопрос, на который она ищет ответ, — из чего построен наш мир, что является его исходным “дном” и есть ли вообще такое “дно”. Она исследует первичные частички вещества — “семена вещей”, как говорили древние учёные, изучает сложные процессы их взаимопревращений.

    Ещё недавно космология и физика элементарных частиц считались совсем разными науками. Теперь между ними выявлена тесная связь. Здесь ещё много нерешённых вопросов, тайн и поразительных парадоксов. Предполагается, что было время, когда Вселенная имела размеры микрочастицы. Там в океанах бурлящей плазмы обитали кентавры и сфинксы микромира — необычайно тяжёлые, не дожившие до нашего времени частицы. Время тогда вело себя неспокойно, оно то вдруг поворачивало вспять, то опять выправлялось и текло в “нормальном” направлении. Пространство тогда распадалось на отдельные порции-кванты, а вещество превращалось во всполохи волн. Там часть могла быть больше целого, левое не отличалось от правого, целые области пространства могли сворачиваться, как раковина, схлопываться и проваливаться в “чёрные дыры”. Безудержная фантазия писателей-фантастов бледнеет перед диковинами, которые открывают нам породнившиеся космология и физика элементарных частиц!

    Вот об этом и пойдёт речь в нашей книге. Её цель — познакомить юного читателя с тем, как устроен окружающий нас мир в самом большом и самом малом, рассказать о проблемах, надеждах и трудностях, лежащих на пути учёных, пробивающих узкие тропки в Страну Неизвестного, которые превратятся потом в просторные шоссе технического прогресса. Читатель увидит, какое благодатное поле предоставляет физика для умелых рук и пытливого ума тех, кто изберет её делом своей жизни.

    История науки учит, что всякий раз, когда человечество овладевает очередной ступенькой лестницы, ведущей в глубь вещества, это приводит к открытию нового, ещё более мощного вида энергии. Горение и взрыв связаны с перестройкой молекул. Внутриатомные процессы сопровождаются выделением в миллионы раз большей энергии. С ещё более мощным энерговыделением мы встречаемся на уровне элементарных частиц. А что будет на следующих ступенях? Изучение строения вещества — это одновременно и поиск новых источников энергии. Не зря говорят, что нет ничего практичнее хорошей теории!

    Когда речь идёт о переднем крае науки, где самим учёным ещё далеко не всё ясно, возникает трудная задача: как рассказать об этом так, чтобы было достаточно просто и вместе с тем донести до читателя суть того, что волнует специалистов. Кто-то, возможно, искренне удивится: в чём, собственно, проблема? Ведь речь идёт о вещах, хорошо знакомых учёному. Что стоит, мол, ему поведать о том, что у него, как говорится, в зубах навязло!

    Пожалуй, самое трудное здесь — это язык. Учёный говорит и думает на ёмком профессиональном языке, где за каждым словом — уйма специальных понятий. Экстраполяция, изоспин, интерференция, квантование — эти и множество других терминов используются в разговорах учёных как нечто само собой разумеющееся. Если запретить их, учёный буквально онемеет, потеряет язык. А как быть с читателем, которому все эти термины как колдобины на дороге? Попытаться переложить их на обиходный язык? Но тогда суть дела просто утонет в объяснениях, и ваш рассказ не станут ни читать, ни слушать. Вот и приходится использовать аналогии, заменять сложные понятия очень приближёнными, зато наглядными образами.

    Впрочем, так поступают и сами учёные, когда разъясняют своим коллегам новые понятия и идеи.

    Трудные вопросы обладают свойством тянуть за собой вереницу новых. Никогда нельзя сказать: я понял всё. На заднем плане всегда остаётся частокол “как” и “почему”. Один из физиков любил повторять, что у понимания есть три стадии: первая — когда кажется, что всё ясно, вторая — когда появились вопросы, и третья — когда эти вопросы затмили тот, с которого всё началось. Это, конечно, шутка, но в ней скрыта глубокая мысль. Чем глубже мы понимаем проблему, тем серьёзнее становятся рождённые ею новые вопросы.

    По своему опыту знаю, что книги о науке полезно читать дважды. Первый раз быстро, чтобы составить общую картину и в главных чертах уяснить, что к чему. Потом ещё раз — медленно и вдумчиво, разбирая детали, а главное, постоянно задавая себе вопрос: почему? Бальзак как-то верно заметил, что ключом ко всякой науке является вопросительный знак.

    И ещё одно. На переднем крае науки надо быть готовым встретиться с идеями и фактами, которые покажутся несовместимыми со здравым смыслом. Не следует только забывать, что “здравый смысл” — это всего лишь основанная на опыте привычка видеть ход вещей в определённом свете, привычка, которая может подвести в области новых явлений. Здесь надо семь раз подумать, прежде чем сказать: это невозможно, этого не может быть.

    Очень поучителен случай, который произошёл в Парижской Академии наук в конце XVIII века. Тогда большинство учёных отказывалось верить многочисленным свидетелям падения метеоритов. Такого не может быть, и всё, камней на небе нет! И когда пришло очередное сообщение, подписанное мэром и многими жителями одного из гасконских городков, академики приняли специальное решение о необходимости более энергичной борьбы “с суеверием”. Но камни с неба продолжали падать, и Парижской Академии не оставалось ничего другого, как забыть о своём опрометчивом решении.

    В таинственных джунглях Страны Неизвестного следует быть очень осторожным. Плохо, если мы тигра примем за большую домашнюю кошку, но и горящие в темноте кошачьи глаза не следует путать с глазами монстра. Компасом тут служит эксперимент. Только он в конечном счёте может сказать, правильны наши представления или нет.

    Безусловно, в книге нет готовых ответов на все вопросы, которые возникнут у читателя. Часть ответов может найти сам читатель, если будет размышлять, сопоставлять и сравнивать прочитанное. А тем, кто захочет глубже заглянуть в суть проблемы, полезно будет заглянуть и в другие книги на эту тему.

Глава 1
Пять ступеней вглубь

    Ступень молекул, ступень атомов... Сегодня известно пять таких ступеней, пять этажей мироздания. Что находится на самых нижних из них? Есть ли что-нибудь ещё глубже? Куда ведёт эта лестница — в бездну бесконечного или же, в конце концов, мы спустимся в самый нижний этаж, в подземелье, где спрятаны главные тайны нашего мира?

    Какие законы управляют миром? Каждый этаж — удельное княжество, монастырь со своим собственным уставом или же это — рядовая губерния единого государства с обязательным для всех общим законом? Как устроено это государство — по принципу монархии, когда где-то глубоко в недрах материи есть самый главный Первоэлемент, или же по законам демократии с равноправными гражданами-частицами на каждом этаже?

    Итак, как устроен и из чего состоит наш мир в самых глубинных его слоях?

    А как туда заглянуть, с помощью какого микроскопа? Может быть, там прячутся "атомы пространства" – последние неделимые далее "пузырьки", внутри которых больше уже ничего нет?

    Масса вопросов, один сложнее другого. Попытаемся ответить хотя бы на некоторые из них. Вступим на первую ступеньку лестницы, ведущей в недра материи.

стр. 162
Где начало того конца, которым кончается это начало?

    В теории фридмонов мы впервые встречаемся с ситуацией, когда для объяснения свойств микрообъектов приходится привлекать космические явления, и, наоборот, решение космологических проблем происхождения и строения Вселенной связывается со свойствами элементарных частиц. Гипотеза фридмонов показала условность наших представлений о самом большом и самом малом. Привычное разделение мира на космос и микромир, оказывается, не имеет абсолютного значения и применимо лишь в определённых границах. В зависимости от условий и точки зрения, один и тот же объект может выглядеть, как микроскопически малая частица и как грандиозная по своим размерам Вселенная. Лестницу структурных форм материи нельзя мыслить в виде бесконечного числа этажей-ступеней, уходящих в область исчезающе малых интервалов, с одной стороны, и в область неограниченно больших масштабов — с другой. Если принять гипотезу фридмонов, бесконечность мира, скорее, оказывается похожей на круг, где ультрамалое одновременно является и ультрабольшим. Углубляясь в недра материи, мы неожиданно снова возвращаемся в космос, и наоборот. Поди разберись, где тут начало и где конец, что простое, а что сложное!

    Вселенная устроена необычайно сложно. Свойства, принадлежащие, казалось бы. к противоположным этажам мироздания, неожиданно оказываются тесно связанными, а иногда и переходят одно и другое. Всё это настолько непривычно, что у человека, который впервые знакомится с выводами теории относительности, как говорится, иногда ум за разум заходит. Всё не так, как в школьной физике.

    Однажды какая-то газета напечатала объявление, в котором говорилось, что поскольку новая теория Эйнштейна перевернула физику с ног на голову, занятия по физике в школах отменяются до тех нор, пока профессор Эйнштейн не поставит эту науку обратно на ноги. И хотя объявление появилось первого апреля, Эйнштейн получил массу писем с вопросом: когда же, наконец, он восстановит порядок в физике?

    Здесь опять уместно повторить: современную физику нельзя просто выучить, к ней надо ещё и привыкнуть!

стр. 168
Загадки и парадоксы

    Идея Фридмана об ограниченной в пространстве и времени расширяющейся Вселенной вошла в учебники, о ней сегодня пишут в газетах, говорит радио, показывает телевидение. Она стала частью мировоззрения каждого образованного человека. Однако в этой грандиозной, поражающей воображение картине мироздания есть тёмные пятна, а часть удерживающих её теоретических “гвоздей” готова вот-вот сломаться.

    Прежде всего удивляет однородность Вселенной. Как уже говорилось выше, на небольших (в космических масштабах, конечно!) участках она явно неоднородна: безвоздушное пространство, плотные планеты и звёзды. Но на больших расстояниях, сравнимых с размерами скоплений галактик, распределение вещества напоминает орнамент волокон со случайными, но близкими по величине размерами деталей. Какие-то процессы сделали Вселенную равновесной. И этот экспериментальный факт трудно согласовать с гипотезой первичного взрыва. Распределение взорвавшегося вещества (инфраструктура взрыва, по терминологии специалистов) определяется игрой случайных факторов и, как правило, весьма неоднородно. Поэтому если Вселенная действительно родилась в катаклизме огненной вспышки “Биг Бэнга” с огромными перепадами плотностей и давлений, её отдельные области-осколки должны были значительно различаться по своей массе.

    Ещё более удивляет необычайно высокая однородность реликтового теплового излучения — остаточного жара первичной вспышки. Температура излучения, приходящего к нам с разных направлений, в том числе и прямо противоположных, различается менее чем на сотую долю процента.

    Наблюдаемая однородность Вселенной выглядит особенно загадочной, если учесть, что к нам приходят сигналы из областей, которые на протяжении всей своей истории были удалены друг от друга на такие большие расстояния, что они не успели провзаимодействовать даже с помощью самых быстрых, то есть световых, сигналов. Каким же образом они могли прийти в равновесие? По теории Фридмана это просто невозможно.

    Ещё один удивительный факт связан с величиной средней плотности вещества Вселенной. Из теории Фридмана следует, что если бы в первые мгновения после первичного взрыва она всего лишь на 10–53 % (десятичная дробь с 54 нулями после запятой!) превосходила критическую, при которой мир становится полностью замкнутым, то силы тяготения превозмогли бы инерцию первичного взрыва и расширение Вселенной давным-давно сменилось бы её сжатием, и теперь наблюдалось бы не разбегание галактик, а их быстрое сближение. С другой стороны, если бы плотность взорвавшейся материи на 10–53 % была бы меньше критической, расширение пространства происходило бы значительно быстрее, и современная средняя плотность материи в нашем мире была бы во много-много раз меньше наблюдаемой. Другими словами, наша Вселенная родилась с плотностью, которая почему-то фантастически близка к критической. Почему так произошло? В теории Фридмана нет объяснения и этой загадке. Чтобы её объяснить, нужны какие-то совершенно новые физические идеи.

    Загадку начальной плотности иногда называют также “проблемой абсолютно плоского мира”. Если плотность больше критической, мир, образно говоря, вогнутый, если меньше — он выпуклый (как говорят дети, “впуклый” и “выпуклый”!). В промежуточном случае — мир плоский. Наша Вселенная почему-то предпочла родиться плоской (с точностью 10–53 %), хотя это только одна из бесчисленного количества возможностей. Трудно думать, что это — случайность. Этому есть какая-то важная причина.

    Не находят никакого объяснения в теории Фридмана или объясняются ею с трудом, ценой дополнительных, плохо обоснованных гипотез, и некоторые другие экспериментальные факты. Например, не понятно, почему не удаётся поймать ни одного магнитного монополя, хотя, как это следует из расчётов, они должны были бы в большом количестве родиться в раскалённом веществе юной Вселенной.

    Всё это говорит о том, что теория Фридмана нуждается в дальнейшем усовершенствовании. А поскольку трудности этой теории, как правило, связаны с начальным периодом жизни Вселенной, можно думать, что прежде всего следует уточнить описание свойств мира в окрестностях “особой точки” в первые доли секунды после его рождения.

    Теория Фридмана и лежащая в её основе общая теория относительности Эйнштейна имеют дело лишь с геометрическими свойствами природы. Никаких сведений о заполняющей пространство материи они не используют. Достаточно знать её плотность, а что это за материя, каковы её конкретные свойства — это для теории Эйнштейна—Фридмана не существенно. Такой подход оправдан на больших расстояниях, где гравитационные силы, определяющие кривизну и другие геометрические свойства нашего мира, можно рассматривать отдельно от электромагнитных и ядерных взаимодействий. Но в микромире, где силы становятся величинами одного порядка, такое приближение уже не верно. Там само пустое пространство зависит от свойств физических процессов. В нём постоянно рождаются и исчезают частицы. Вспомним испарение чёрных дыр вследствие “кипения” окружающего их вакуума. Такое “кипение” происходит во всём бесконечном пространстве, и его интенсивность (густота рождающихся пар частиц и античастиц) определяет основной, нулевой уровень мира — вакуум. Только что родившаяся Вселенная имела ультрамалые размеры, и её вакуум был совсем не таким, как в современном мире. Влияло это и на ритм времени. В первые мгновения после рождения Вселенной пространство и время нельзя было рассматривать отдельно от вещества. Вот в этом направлении и следует совершенствовать теорию Фридмана.

    Сама но себе идея о тесной связи свойств пространства и времени со свойствами физических процессов далеко не нова. Немецкий математик Бернгард Риман, которому мы обязаны созданием математической теории искривлённых и многомерных пространств, высказал её ещё более ста лет назад.

    “Эмпирические понятия, на которых основывается установление пространственных метрических отношений, — говорил он в своих лекциях в Гёттингенском университете, — понятия твёрдого тела и светового луча, по-видимому, теряют всякую определённость в бесконечно малом, поэтому метрические отношения там не отвечают нашим геометрическим допущениям”.

    Эти убеждения разделял и Эйнштейн. Последние сорок лет своей жизни, большую её часть, он целиком посвятил созданию единой теории электромагнетизма и тяготения. Экспериментальных данных, которые могли бы подсказать ему ведущую идею, в то время было ещё недостаточно, а на основании одних только теоретических соображений построить новую теорию не удалось. К созданию единой теории всех сил природы, объединяющей её геометрические и материальные свойства, физики смогли приступить лишь совсем недавно, после того, как лучше разобрались в свойствах элементарных частиц.

стр. 196
Один в двух лицах

    Представим себе, что электрон попадает на поглощающий экран с двумя отверстиями, за которыми расположена фотопластинка. Электрон пройдет через одно из отверстий и оставит точечный след на фотопластинке. Повторяя многократно этот опыт, мы должны получить на ней наложение двух картин: чёрное пятно от электронов, прошедших сквозь одно отверстие, и такое же пятно от электронов, воспользовавшихся вторым отверстием.

    Казалось бы, это — единственно возможный результат, другого и быть не может. Так вот, ничего подобного! На фотопластинке получается в точности такая же картина, как при столкновении двух волн на воде, когда на водной поверхности образуется рябь горбиков и ложбин. На пластинке им соответствует рябь размытых пятен и просветов между ними. В физике это называется интерференцией.

    Две волны сталкиваются, и там, где пик одной накладывается на пик другой, они усиливают друг друга, а там, где пик одной волны совпадает с направленным в обратную сторону пиком другой, образуется ложбина — здесь волны гасят друг друга. Отсюда и возникает рябь. Можно бросить два камня в воду и посмотреть, как происходит такая интерференция. Но откуда ей взяться, когда сквозь экран каждый раз проходит только один электрон? Столкнуться и интерферировать он может лишь... сам с собой. Другими словами, электрон каким-то образом ухитряется стать одним в двух лицах и пройти сразу сквозь два, далеко отстоящих друг от друга, отверстия. Это напоминает картинку из рубрики “Чудаки на последней странице “Литературной газеты”: длинная ровная лыжня из двух параллельных следов, и вдруг невесть откуда взявшаяся елка между ними!

    Может, электрон распадается на какие-то куски? Но нет, если бы это было так, то, закрыв одно из отверстий, мы могли бы “поймать” кусочек электрона, который прошёл сквозь оставшееся открытым отверстие. Опыт показывает, что никаких кусков от электрона не откалывается, и сквозь отверстие каждый раз проходит вполне нормальный, совершенно целый электрон.

    Поведение электрона выглядит просто невероятным, противоречащим самой элементарной логике, — всё равно что войти в комнату с двумя дверями и столкнуться лбом с самим собой! И тем не менее никакого другого объяснения наблюдаемому ходу событий, с точки зрения ньютоновской механики, дать нельзя. Точно известно, что каждый электрон проходит через одно из двух отверстий, а фотопластинка убеждает нас в том, что он раздваивался. Вопиющее противоречие, как будто мы имеем дело с электроном и его двойником-призраком!

    Когда такое необъяснимое, “противоестественное” поведение микрочастиц было обнаружено впервые на опыте, многие учёные восприняли его как конец физической науки, которая, казалось им, добралась, наконец, до исходного, “первозданного микрохаоса”, прикоснулась к “праматерии”, где уже нет никаких законов. Знаменитый голландский физик Г. Лоренц ещё совсем недавно, в 1924 году, с горечью писал: “Где же истина, если о ней можно делать взаимно исключающие друг друга утверждения? Способны ли мы вообще узнать истину и имеет ли смысл вообще заниматься наукой? Я потерял уверенность, что моя научная работа вела к объективной истине, и я не знаю, зачем жил; жалею только, что не умер пять лет назад, когда мне всё ещё представлялось ясным... Взамен ясных и светлых образов возникает стремление к каким-то таинственным схемам, не подлежащим отчётливому представлению”.

    Положение казалось безнадёжно запутанным: беспричинно мечущиеся в пространстве частицы, каждая из которых может столкнуться сама с собой. И в то же время состоящие из них тела с удивительной точностью подчиняются законам Ньютона. Было от чего прийти в отчаяние. Как шутили в то время физики, по чётным дням недели им приходилось пользоваться механикой Ньютона, а по нечётным — доказывать, что она не верна! Казалось бы, мир и минуты не мог бы существовать, будь в нём такие ужасные противоречия, а он живёт уже двадцать миллиардов лет! Физика зашла в тупик.

Загадка света

    Теоретическая путаница у физиков возникала не только при попытках понять, как движется микрочастица, но и при объяснении природы света. Что это, частица или волна? Ещё триста лет назад об этом ожесточённо спорили Ньютон и Гук. Первый разделял точку зрения, которой придерживались ещё древнегреческие учёные: свет — это поток мельчайших, не различимых глазом частиц-корпускул. Это хорошо объясняло известные в то время оптические явления — поглощение света экранами, его отражение от зеркал, преломление в линзах и многое другое. Всё это удавалось объяснить, используя законы механики для частиц-корпускул. Гук был убеждён в том, что свет по своей природе похож на звук, — это тоже волны, испускаемые источником.

    Фольклорное эхо донесло до наших дней немало пикантных подробностей этих словесных баталий, то и дело выходивших далеко за рамки научных дискуссий. Говорят, что после одного из споров, в котором темпераментный и не стеснявшийся в выборе выражений Роберт Гук превзошёл самого себя в язвительной критике ньютоновской теории световых корпускул и её автора, последний решил вообще не публиковать своих трудов по оптике, пока будет жив Гук.

    Надо заметить, что Роберт Гук отличался удивительно неуживчивым, болезненно самолюбивым характером. Разносторонний, талантливый человек с живым, нестандартным мышлением, он в своих исследованиях часто далеко опережал коллег. Бывало, правда, переоткрывал открытое, с жаром доказывая свой приоритет. Ни одно его исследование, ни одно изобретение не было доведено до конца. Непрерывные недоразумения, ссоры, склоки, приоритетные споры заполняли жизнь этого исключительно одарённого, но крайне мелочного и вздорного человека. Почти всякий талантливый учёный вскоре становился его врагом. Ньютон в этом отношении не был исключением.

    Но главной причиной решения Ньютона воздержаться от публикации своих трудов была, конечно, не полемичная страстность Гука и его необузданный характер, а сила приводимых им новых фактов. Корпускулярная гипотеза, развивавшаяся Ньютоном, не могла устоять против них. Только с помощью волновых представлений можно было объяснить, почему прибавление света к свету может не только увеличивать, но иногда и уменьшать освещённость, порождая сложные интерференционные картины, как у волн в жидкости, или почему, например, свет огибает мелкие препятствия и на краях тени всегда есть некоторая полутень. В случае потока частиц тень должна иметь резкие края — частица либо поглощается экраном, либо пролетает мимо, и направление её движения нисколько не изменяется.

    Явлений, в которых проявляется волновая природа света, становилось всё больше, и в течение трёх последующих веков учёные были твёрдо убеждены, что свет — это волновое движение некой сверхтонкой, заполняющей всё пространство материи. Её стали называть эфиром. Так древние греки в своих мифах называли особый “сверхтонкий” воздух, которым дышит Зевс и другие боги на вершине Олимпа. Для объяснения оптических свойств эфир впервые широко стал использовать голландец Христиан Гюйгенс.

    Однако, как это часто бывает в физике, её развитие неожиданно снова возродило старую идею. Несмотря на успехи волновой теории, с конца прошлого века стали быстро накапливаться факты, которые можно было объяснить, лишь допустив, как это делал когда-то Ньютон, что свет — это поток отдельных, не связанных между собою частиц. Их называют теперь фотонами. Идею о корпускулярном строении света в начале нашего века возродил Эйнштейн. Об этом уже рассказывалось в первой главе. Теория Эйнштейна объединила старую ньютоновскую гипотезу с выдвинутой незадолго до этого идеей немецкого теоретика Макса Планка о том, что при всех взаимодействиях энергия передается квантами — дискретными порциями, кратными некоторой минимальной величине, которая является такой же фундаментальной постоянной, как скорость света или заряд электрона. В честь открывшего её учёного эту постоянную стали называть константой Планка.

    Идея дискретного, квантованного света получила блестящее подтверждение в атомных процессах. Сталкиваясь с атомными электронами, световые частицы рассеиваются, подобно упругим горошинам. В тех случаях, когда их энергии недостаточно для полного отрыва электрона от атома, электрон поглощает фотон, увеличивает свою энергию, становясь менее скованным “силой электрического притяжения, переходит на большую, более далёкую от центра атома орбиту — атом возбуждается. В последующем электрон может вернуться на исходное место, ближе к ядру, а освободившаяся энергия излучится в виде фотона.

    Атомы могут возбуждаться и при столкновениях друг с другом. Так происходит при нагревании. Слабо нагретое тело испускает лишь невидимые инфракрасные фотоны, при увеличении температуры, то есть скоростей хаотического движения составляющих тело атомов, испускается видимый свет — сначала “мягкие” красные фотоны, а затем “жёсткие” синие. При высоких температурах рождаются очень жёсткие фотоны ультрафиолетового света. Все особенности испускания и поглощения света прекрасно объясняются фотонной теорией.

    Казалось бы, можно уверенно сказать, что корпускулярная теория света одержала победу. Но как быть с волновыми свойствами света? Они не перестали существовать. Как и во времена Ньютона, корпускулярная теория их не объясняет. Поэтому загадка света ничуть не прояснилась, наоборот, она стала ещё непонятнее.

Гибрид волны и частицы

    Вскоре был установлен ещё один удивительный факт: во всех процессах энергия световой частицы каждый раз оказывается обратно пропорциональной длине световой волны, то есть определяется каким-то непонятным коллективным эффектом. Получается, что хотя фотон и не связан с другими своими братьями (все они совершенно независимые частицы), но он всё же как-то чувствует их присутствие, и они все вместе составляют световой поток. Внешне это выглядит так, как будто частицу-фотон несет гребень какой-то таинственной нематериальной волны. И чем больше его энергия, тем короче, “жёстче” эта волна.

    В этом есть нечто общее с тем, как поток электронов проходит сквозь щели в экране. Каждый электрон тоже ведь пролетает сквозь какую-то одну щель, и при этом он тоже как будто знает о своих собратьях, которые взаимодействуют с экраном до и после него и располагаются на фотопластинке так, чтобы в целом получилась единая интерференционная, волновая картина. Более того, каждый следующий электрон может испускаться и проходить сквозь щели в экране уже после того, как предыдущий поглотился фотопластинкой. И всё равно связывающий их коллективный эффект остаётся: на пластинке опять образуются отчётливые интерференционные просветы и пятна. Каждый из электронов каким-то образом ухитряется провзаимодействовать со своими уже умершими и с ещё неродившимися собратьями.

    Размышляя над странной аналогией в поведении электронов и частиц световой волны, французский физик Луи де Бройль пришёл к мысли о том, что любой микрочастице, независимо от её природы, сопутствует некая “волна материи”. Подобно мифическому кентавру, полулошади-получеловеку, микрочастица, по мнению де Бройля, тоже объединяет в себе, казалось бы, несовместимое — является гибридом волны и корпускулы. Де Бройль предположил, что не только у фотона, но и во всех других случаях длина “волны материи” обратно пропорциональна энергии связанных с нею частиц. И хотя физическая природа этих волн (их стали называть дебройлевскими) оставалась загадочной, они хорошо описывали сложные интерференционные узоры в опытах с электронами, а позднее и с более тяжёлыми частицами — протонами и даже молекулами. Перед физиками встала интригующая задача — понять и объяснить происхождение этих загадочных волн.

    Интересно, что первым, задолго до де Бройля, ещё в конце прошлого века, идею о волнах материи высказал русский учёный Б. Б. Голицын. И это была не просто гениальная догадка-озарение, свой вывод Голицын основывал на анализе экспериментального материала по выбиванию электронов светом из металлических пластин. В этих опытах впервые были получены указания на дискретные свойства световой волны. Три десятилетия спустя их использовал и Луи де Бройль. Однако русский учёный слишком опередил своё время. В конце XIX века была ещё слишком велика вера во всемогущество классических законов Ньютона. Большинство учёных было уверено, что основные законы природы уже открыты и физика близка к своему завершению, остались лишь небольшие доделки. На этом фоне идея о волнах материи выглядела совершенно несерьёзной и фантастической. Против неё резко выступил известный московский физик А.Г. Столетов, тот самый, кто выполнил опыты по выбиванию электронов светом, ставшие в дальнейшем одним из краеугольных камней квантовой теории. Это могло бы выглядеть историческим курьёзом, но для Столетова всё обернулось трагедией. Дело в том, что Б.Б. Голицын был не только талантливым физиком, но обладал ещё и княжеским титулом, а это в дореволюционной России было очень важным обстоятельством. У Столетова стали возникать служебные неприятности, а он, будучи человеком принципиальным, не мог поступиться своими научными убеждениями. Всё больше сил уходило на бесплодную борьбу. Закончилось это тяжёлым сердечным приступом и последовавшей вскоре за этим смертью Столетова, а замечательная идея Голицына была похоронена заживо и не оказала никакого влияния на последующее развитие физики. Де Бройль ничего не знал об этой идее.

    Александр Григорьевич Столетов родился во Владимире в старой купеческой семье, которая при Иване Грозном была выслана из Москвы за крамолу и вольнодумство. Во Владимире именем Столетова названа улица. Он внёс большой вклад в развитие физической науки в России, некоторые из его студентов стали известными учёными. У Столетова учился физике основоположник отечественной авиации Н.Е. Жуковский. И вместе с тем он своим авторитетом “задавил” идею, которая, став широко известной физикам, значительно бы ускорила развитие науки. В жизни подчас бывают парадоксальные ситуации...

    История “волн материи” говорит также о том, насколько осторожным следует быть с научными идеями. Не зря некоторые физики предлагают создать специальный журнал, который бы печатал “материал к размышлению” — не признанные, но и не опровергнутые идеи.

стр. 231
Проблема причинности

    Первоначально физикам казалось, что вопиющим противоречием является уже сам факт изменения временного порядка в процессах с тахионами. Ведь если, например, один наблюдатель зафиксировал, что тахион испущен атомом урана и поглощён атомом серы, то другой наблюдатель может увидеть, что атом серы поглощает тахион, который ещё только будет испущен ураном. Явная бессмыслица!

    Выход нашёл работающий ныне в США пакистанский физик Сударшан. Он учёл, что для любого процесса с элементарными частицами всегда можно найти обратный, в котором все частицы заменены на античастицы, а античастицы, в свою очередь, — на частицы. Другими словами, процесс испускания частицы всегда можно рассматривать, как поглощение античастицы, и наоборот. Такая симметрия хорошо проверена на опыте. Это означает, что, с формальной точки зрения, прямой и обратный процессы можно считать одной и той же реакцией, если античастицы рассматривать, как частицы, движущиеся обратно во времени. Например, если тело А испускает электрон или отрицательно заряженный тахион, который поглощается телом В, то ни в самой реакции, ни в её окружении ничего не изменится, если считать, что на самом деле тело В испустило позитрон или положительный тахион, который затем поглотило тело А. А раз так, то, возвращаясь к опыту с атомами урана и серы, допустимо считать, что второй наблюдатель увидит процесс, в котором атом серы испускает антитахион, а атом урана его поглощает. И никакого противоречия нет, концы с концами сходятся.

    С первого взгляда рассуждения Сударшана выглядят, может быть, не совсем понятными, но если изобразить их в виде простенькой схемы на бумаге, в них легко разобраться.

    Тем не менее всех противоречий остроумное предложение Сударшана всё же не устранило. Дело в том, что ни один сверхсветовой процесс нельзя изолировать от окружающей “досветовой” обстановки. Это можно сделать лишь в теории, а в реальном мире всякое явление бесконечным числом связей скреплено с окружающими телами. Полностью отгородиться от них невозможно. Таково одно из основных свойств нашего мира. Поэтому изменение направления времени в сверхсветовом процессе неизбежно приходит к противоречию с направлением течения времени в нашем мире, или, как говорят философы, со “стрелой времени”, которая задаётся движением окружающих нас досветовых тел и временным порядком происходящих в них процессов. Если такие тела соседствуют с тахионами, возникают похожие на чудо ситуации, в которых нарушена причинная связь событий. Следствие может опередить вызывающую его причину.

    Допустим, например, что охотник тахионной пулей поражает сидящую на столбе ворону. Космонавт же в иллюминатор пролетающей мимо ракеты увидит, что по какой-то непонятной причине из вороны вылетела тахионная пуля, которая была поймана ружьём охотника. А главное, тот каким-то образом заранее знал, в какую сторону и под каким углом ему следует направить ствол ружья, чтобы поймать шарик тахионного вещества! Космонавту всё это покажется подлинным чудом. Подобных ситуаций можно придумать множество.

    В мире со сверхсветовыми явлениями прошлое перепутано с будущим. Там ничего не стоит подсмотреть, что находится “по ту сторону завтра”. Нужно только сесть в экипаж, движущийся с подходящей скоростью. В таком мире наказание предшествует суду, а преступление совершается в последнюю очередь. Там можно найти такую систему координат, где ещё не родившийся внук может поговорить по сверхсветовому телефону со своей давно умершей бабушкой. Стоит только изменить скорость, и вы из будущего перенесёте свой взор в далёкое прошлое или наоборот. Там можно застрелить самого себя в прошлом. Куча нелепостей! Фантасты, которые в своих романах пишут о космических кораблях со сверхсветовыми скоростями, наверное, ничего не слышали об этих парадоксах.

    Как избавиться от нарушений причинности в процессах с тахионами и можно ли это вообще сделать, остаётся не ясным. Недавно итальянским физикам удалось показать. что нарушение причинности всегда сопровождается нарушением законов сохранения энергии и импульса. Другими словами, если требовать точного выполнения этих законов, то нарушающие причинность взаимодействия просто не должны происходить, и физическое тело по отношению к тахионам будет вести себя, как абсолютно прозрачное. К сожалению, это тоже не устраняет всех противоречий. Оказывается, если невозможно взаимодействие тахиона с телом, как с целым, то может произойти взаимодействие с его частью или наоборот. Полностью запретить непричинные взаимодействия не удаётся.

    Результат итальянских физиков можно считать теоретическим доказательством того, что в больших, макроскопических областях пространства и времени тахионов нет, так как иначе нарушалась бы не только причинность, но и законы сохранения энергии и импульса, можно было бы построить вечный двигатель, превратить холод в тепло и тому подобное. Поскольку ничего такого в природе не бывает, то тахионы, если они всё же рождаются в нашем мире, не могут выходить за пределы ультрамалых пространственно-временных областей. Опыт подсказывает, что временной порядок там становится не таким строгим, как на больших расстояниях, и его зависимость от системы координат уже не будет нарушать причинность.

    При этом, конечно, возникает вопрос: что же удерживает гахионы в ультрамалом, не даёт им разлететься?

    Как будет, если, например, тахионы — короткоживущие частицы, обладающие способностью самоускоряться? Время жизни таких частиц будет сокращаться при увеличении их скорости, и, самоускоряясь, они распадутся почти сразу же вблизи точки своего рождения. Могут быть и другие причины “пленения” сверхсветового вещества, природа неистощима на выдумки.

    Как бы там ни было, пока нет никаких запретов существованию тахионов в очень малых областях пространства и в течение очень кратких моментов времени. Следовательно, и время там может идти вспять. А вот существуют ли на самом деле такие частицы и такие вывернутые во времени процессы — здесь слово за экспериментом.

Что говорит опыт?

    Понятно, что обнаружить сверхсветовые частицы можно лишь по следам, которые они оставляют в окружающем веществе. Но могут ли вообще частицы со столь необычными свойствами взаимодействовать с обычным, досветовым веществом наших приборов? Некоторые учёные считают, что эти два типа вещества просто не чувствуют друг друга, проходят одно сквозь другое, как свет сквозь прозрачный материал. Если это так, то тахионы — ненаблюдаемые объекты, а световой и сверхсветовой миры оторваны один от другого — у них просто нет точек соприкосновения. Трудно, однако, думать, что в природе, где всё взаимосвязано и взаимообусловлено, могут существовать материальные тела, которые ничем себя не проявляют и принципиально не наблюдаемы. Если же между тахионами и досветовым веществом есть взаимодействие, то тахионы должны рождаться при столкновениях досветовых частиц и можно попытаться зафиксировать их с помощью имеющихся в нашем распоряжении средств.

    Таких опытов выполнено уже немало. В ряде случаев отмечались эффекты, которые, в принципе, можно было бы приписать сверхсветовым частицам. Однако всегда удавалось найти и более привычное объяснение. Например, английские физики изучали распространение ливней вторичных частиц, образуемых в земной атмосфере высокоэнергетическими частицами космического излучения. Во многих ливнях детекторы зафиксировали сигналы, значительно опережающие приход лавины частиц. Этот результат можно объяснить, допустив, что в ливне присутствуют частицы со скоростями, намного большими, чем у остальных. А поскольку скорость большинства частиц в ливне близка к скорости света, это, казалось бы, подтверждает присутствие тахионов. К сожалению, более детальный анализ показал, что, сделав некоторые дополнительные предположения, не выходящие за рамки известной досветовой физики, опережающие сигналы детектора можно объяснить причинами технического характера, как неточные, ложные выбросы.

    Особенно часто сверхсветовые аномалии возникают в астрономических наблюдениях, где детали движения изучаемых объектов бывают плохо известны. Так, недавно в печати сообщалось о наблюдении американскими астрофизиками сверхсветовых выбросов вещества квазарами — излучающими огромную энергию космическими объектами на краю видимой нами части Вселенной. Из сравнения двух фотографий, сделанных с интервалом примерно в один год, получен вывод о том, что выбросы удаляются от квазаров со скоростью, в несколько раз превосходящей световую. Тем не менее последующий анализ обнаружил такие особенности процессов, которые устранили противоречия с “досветовой физикой”. Тахионный эффект оказался всего лишь оптическим обманом.

    Интересный опыт по поиску тахионов в микропроцессах выполнили другие американские физики. Они допустили, что тахионы взаимодействуют с веществом, как и досветовые частицы, но время их жизни чрезвычайно мало. Участвуя во взаимодействиях, они изменяют энергии и направления движения досветовых частиц. Эти изменения совсем не такие, какие вносили бы быстро распадающиеся частицы со скоростями, меньшими, чем у света. Вот по таким специфическим искажениям параметров участвующих в реакции частиц и можно установить, принимали в ней участие сверхсветовые тахионы или нет. При тщательной обработке экспериментального материала были обнаружены ожидаемые аномалии в скоростях и углах вылета. Они хорошо объяснялись, если допустить, что сталкивающиеся в реакции частицы обменивались (как бы играли в бадминтон) тахионами с массой, большей нуклонной, и временем жизни около 10–24 секунд.

    Однако и здесь можно объяснить результаты опытов, если сделать дополнительные допущения. И хотя по мнению выполнявших эксперимент физиков такое объяснение более сложно, срабатывает знаменитая “бритва Оккама” — если явление можно объяснить на основе уже известных принципов, такому объяснению отдаётся предпочтение.

    Ни один из выполненных экспериментов не дал убедительных доказательств существования сверхсветовых частиц. Но они не доказали и обратного, поскольку во всех опытах есть особенности, которыми можно, хотя бы отчасти, объяснить их неудачу.

    Мы видим, что невозможность изменить направление времени уходит своими корнями в самые фундаментальные свойства материального мира — неисчерпаемость его внутренних взаимосвязей и их причинную обусловленность. В конечном счёте именно эти свойства запрещают путешествия в машине времени. Изменить временной порядок событий, возможно, удастся лишь внутри субмикроскопических интервалов пространства и времени.

    Со сверхсветовыми скоростями дело сложнее. Не исключено, что они могут встретиться нам и на больших расстояниях. Не следует забывать, что выводы об их тесной связи с обращением времени получены на основе формул теории относительности, которые могут оказаться неверными вблизи светового барьера, где концентрация энергии возрастает почти до бесконечности. Абсолютный нуль и бесконечность всегда были источниками новых открытий. В окрестностях светового барьера, возможно, потребуется какая-то новая теория, тогда условия причинности для сверхсветовых частиц могут стать совсем иными и не будут приводить к противоречиям. Хотя такая возможность сегодня кажется маловероятной, но всё же... Устанавливая теоретические шлагбаумы на дорогах физики, следует быть осторожным.

Дата установки: 17.02.2008
[
вернуться к содержанию сайта]

W

Rambler's Top100 KMindex

Hosted by uCoz