КИНЕМАТИЧЕСКИЕ ИСКАЖЕНИЯ ФОРМЫ КОСМИЧЕСКИХ ОБЪЕКТОВ И МЕТОДЫ ЕЁ ВОССТАНОВЛЕНИЯ

асс. Семиков С.А. Нижегородский Госуниверситет доклад на радиофизической конференции (ННГУ) 18 мая 2016 г.

Примеры непостоянства скорости света в космосе

растяжение импульсов пульсаров от дисперсии

эффект Шапиро для Меркурия и Марса

земной аналог свистящие атмосферики

различные запаздывания для изображений квазаров в гравитационных линзах

Эффект Ритца $t' = t + r/c \qquad dt' = \left(1 + \frac{\partial r}{\partial t} \cdot \frac{1}{c} - \frac{r}{c^2} \cdot \frac{\partial c}{\partial t}\right) dt \qquad \frac{c' = c - V_r}{\partial c'/\partial t} = -\frac{\partial V_r}{\partial t} = -\frac{\partial r}{\partial t}$ $dt' = \left(1 + \frac{V_r}{c}\right) dt \quad \left| dt' = \left(1 - \frac{r}{c^2} \cdot \frac{\partial c}{\partial t}\right) dt = \left(1 + \frac{ra_r}{c^2}\right) dt \right|$ эффект Доплера эффект Ритца период $T' = T\left(1 + \frac{V_r}{c}\right)$ $T' = T\left(1 + \frac{ra_r}{c^2}\right)$ частота $f' = 1/T' = f\left(1 + \frac{V_r}{c}\right)^{-1}$ $f' = 1/T' = f\left(1 + \frac{ra_r}{c^2}\right)^{-1}$ $I' = I \left(1 + \frac{V_r}{c} \right)^{-1}$ $I' = I \left(1 + \frac{ra_r}{c^2} \right)^{-1}$ яркость $V_r' = c \frac{\Delta T}{T} = V_r + \frac{ra_r}{c}$ Доплеровское $\frac{\Delta T}{T} = \frac{V_r}{c} + \frac{ra_r}{c^2}$ смещение и

ДИСК

галактика R

 $H=V^2/Rc$

T'=T(1+rH/c)

Земля

мнимая скорость

основной пример эффекта Ритца – красное смещение в спектрах галактик

Искажения графиков лучевых скоростей звёзд

Искажения масштаба времени у пульсаров и барстеров пульсар GX-1+4 пульсар T5X2 (IGR J17480-2446) $\omega = 2\pi/P_{a}$ 2000 интенсивность Oct. 18 **QPO** 1500 otal count rate (c/s/PCU2) Oct. 16 P.' 1000 Oct 25 Nov. 08 P_1 500 (C) период GX-1+4 Nov. 19 150 Oct. 13 140 5000 10000 15000 20000 130 Time (seconds) средняя интенсивность 120 Проявления Ритц-эффекта: 1.2 L_{2.50} (10³⁸ erg/s) H ť, (годы) 110 яркость $I' = I \left(1 + \frac{ra_r}{2} \right)$ 0.6 0.4 2000 2010 1990 1970 1980 $a_{2r} = a_2 \cos(\omega t)$ ait (mHz) $P_1' = P_1 + P_0 \cos(\omega t)$ trac (mHz) # v_{QPO} (mHz) 🗖 частота $f' = f\left(1 + \frac{ra_r}{c^2}\right)^{-1 \frac{2}{5}} \int_{r}^{1} \frac{1}{c^2} \int_{r}^{1} \frac{1}{c^2} \int_{r}^{1} \frac{1}{c^2} \int_{r}^{1} \frac{1}{c^2} \frac{1}{c^2} \frac{1}{c^2} \int_{r}^{1} \frac{1}{c^2} \frac{1}{c^2} \frac{1}{c^2} \frac{1}{c^2} \int_{r}^{1} \frac{1}{c^2} \frac{1}{$ $P_0 = P_1 r a_2 / c^2$. частота $dt' = \left(1 + \frac{ra_{2r}}{c^2}\right)dt$ **QPO** $t' = t + P_0 \sin(\omega t) / \omega P_1$ Примеры пульсаров и 55480 55490 55500 55510 55520 Time (MJD) барстеров с эффектом Ритца: $P_{1}'(t')$ GX-1+4, T5X2, 4U0900-40

Зависимость концентрации галактик и квазаров от z

Согласно [5] до z = 2 ... 3 концентрация квазаров с удалением нарастает как $n \sim (1 + z)^5$, а при больших z падает [19]. Согласно баллистической теории [11], это следствие перевода эффектом Ритца спектрального максимума звёзд сначала в диапазон Δf регистрации радиотелескопа, а затем выходом из него.

При средней мощности W у всё большего числа квазаров регистрируемая в радиодиапазоне Δf мощность $W'=W(1+a_z)^3$ превышает достаточное для регистрации пороговое значение W^* .

Искажение видимой формы звёзд

Многократная визуализация прямой и обратной стороны

Видимый диск звезды (*a*) и схема его искажений (б) позволяет наблюдать сразу прямую и обратную стороны звезды. *в*) Возможное проявление такого "своза" поверхности у переменной є Эридана

Искажение видимой формы галактик

Кривая вращения $v_r(x) \approx kx \cdot \exp[-|x|/a]$ $x(y) = \pm [a(1-y^2/b^2)^{1/2} - V_{\tau x} v_r r/c^2] \approx$ $\approx \pm [a(1-y^2/b^2)^{1/2} - V_{\tau x} kra(1-y^2/b^2)^{1/2} \exp(-(1-y^2/b^2)^{1/2})/c^2]$

Двойные и кратные изображения радиогалактик и квазаров

Источник	3C 33	3C 47	3C 109		3C 390.3
ТИП	радиогалактика	квазар	N-галактика		N-галактика
Z.	0,06	0,425	0,306		0,056
θ ₁ , сек. дуги ('')	109	24	37,5		101
θ 2, сек. дуги (")	135	38	44		167
<i>I</i> ₁ , 10 ⁻²⁶ Вт/м ² /Гц	9,7	2,4	2,3		7,8
<i>I</i> ₂ , 10 ⁻²⁶ Вт/м ² /Гц	3,3	1,3	1,9		3,0
(I_1/I_2)	2,94	1,84	1,21		2,6
$(I_1/I_2)_{\text{reop}} = (\theta_2/\theta_1)^2$	1,53	2,5	1,37		2,73
$(v_r)_{\text{reop}} = v \cos \alpha, \kappa M/c$	32000	67700	24000		73800
<i>U</i> _{теор} , км/с	—	168600	182300		90650
α, градусы дуги (°)	—	66,3	82,5		35,4
<i>V_{теор}, км/с</i>	1645	189	738		743
$v = c \sqrt{\frac{4(\theta_2 - \theta_1)}{(\theta_2 + \theta_1)}}$ объекты, их е орбита лишние изображе галактики или спут галактика на орбите опережающее изображение газовое гало траектория галактики отстающее изображение	η θ1) +1 (η −1) и яркие пр ид и яркие пр мд и яркие пр мд и яркие пр мд Јо414+0534 выброс из М87 (д гало Лебедь А ка сее	$\eta = \left(\frac{I_1}{I_2} \right)$ имеры NGC 1265 Дева А)		Δt_1 Δt_2 θ_1 = νco $I_1 \sim$ $I_2 \sim$ fo. TOI	$= r/c - r/(c)$ $= r/c - r/(c)$ $= \Delta t_1 V/r, \theta$ $= \Delta t_1 V/r, \theta$ $= c(\theta_2 - \theta_2 - \theta_2)$ $= (1 + v\cos \alpha / t)$ $= to + v \cos \alpha / t$ $= to + to $
	писиооброжани				$\theta_2 - \theta_1$

от одновременного прихода излучения из разных точек траектории летящей галактики.

Оценка углового размера радиогалактик и квазаров

 $\Delta t_1 = r/c - r/(c + \upsilon \cos \alpha) \approx r \upsilon \cos \alpha/c^2$ $\Delta t_2 = r/c - r/(c - \upsilon \cos \alpha) \approx -r \upsilon \cos \alpha/c^2$ $\theta_1 = \Delta t_1 V/r \approx \upsilon V \cos \alpha/c^2$ $\theta_2 = -\Delta t_2 V/r \approx -\upsilon V \cos \alpha/c^2$ $\theta = \theta_1 - \theta_2 \approx 2\upsilon V \cos \alpha/c^2$ при учёте поглощения (на *l*) межгалактической средой $\theta \approx (l/r) 2\upsilon V \cos \alpha/c^2$

Теоретическая оценка $\theta_{T} \approx 2\nu V \cos \alpha / c^{2}$ для радиогалактик (излучают электроны) при $\nu \sim 0.1c$, $V \sim 1000$ км/c, $\theta_{T} \sim 140''$, $\theta_{H} \sim 100''$ для квазаров (излучают звёзды) при $\nu \sim 1000$ км/c, $V \sim 1000$ км/c, $\theta_{T} \sim 5''$, $\theta_{H} \sim 10''$

несмотря на большое различие красных смещений **2**, т.е. расстояний, максимальный угловой размер $\theta_{\rm H}$ радиогалактик и квазаров меняется ненамного [5] и соответствует теоретически предсказанному в БТР $\theta_{\rm T}$

Джеты и волокна как результат размытия изображений

Поляризация излучения радиоизображений и волокон

CIZA 2242+53

Методы восстановления изображений космич. объектов

СПИСОК ЛИТЕРАТУРЫ

- 1. Секерин В.И. Теория относительности мистификация века. Новосибирск. 1991.
- 2. Семиков С.А. Ключ к загадкам космоса // Инженер. 2006. №3.
- 3. Семиков С.А. О вращениях небесных сфер // Инженер. 2006. №9.
- 4. Семиков С.А. Трансформаторы спектра в космосе и на Земле // Инженер. 2011. №3.
- 5. Даукурт Г. Что такое квазары? Киев: Радянська школа, 1985. 130 с.
- 6. Семиков С.А. "Однако ж прав упрямый Галилей!" Простая разгадка космических чудес // Техникамолодёжи. 2011. №6.
- 7. Семиков С.А. Звёздный паноптикум // Инженер. 2012. №5-6.
- 8. Семиков С.А. Баллистическая теория света против тёмных сил космоса // Техника-молодёжи. 2012. №6.
- 9. Семиков С.А. Космические узоры и картины // Инженер. 2012. №№8-9.
- 10. Физика космоса. М.: Советская энциклопедия, 1986.
- 11. Семиков С.А. Загадки и жемчужины космического океана // Инженер. 2014. №10.
- 12. Шкловский И.С. Звёзды: их рождение, жизнь и смерть. М.: Наука, 1975. 368 с.
- 13. Семиков С.А. Пульсары, барстеры и другие космические стрелки // Инженер. 2014. №3-4.
- 14. Бронштейн И.Н., Семендяев К.А. Справочник по математике. М.: Наука, 1980.
- 15. Галактики / ред.-сост. В.Г. Сурдин. М.: Физматлит, 2013. 432 с.
- 16. Горбацкий В.Г. Космические взрывы. М.: Наука, 1979.
- 17. Семиков С.А. Баллистическая теория Ритца и картина мироздания. 1–е изд. Н. Новгород: Пресс–контур, 2009, 612 с. (см. также 3–е изд. Н. Новгород: Перспектива, 2013, 612 с.)
- 18. Devasia S. Ritz-type variable speed of light (VSL) cosmology // Physics Essays. 2014. V. 27. P. 523.
- 19. Hartwick F.D.A., Schade D. The space distribution of quasars // Annu. Rev. Astron. Astroph. 1990. V. 28. P. 437.
- 20. Масликов С.П. Новый вариант баллистической теории Ритца // Сб. тр. конгресса «Фундаментальные проблемы естествознания и техники». Санк–Петербург, 2004.